If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+80x+1500=0
a = 1; b = 80; c = +1500;
Δ = b2-4ac
Δ = 802-4·1·1500
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20}{2*1}=\frac{-100}{2} =-50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20}{2*1}=\frac{-60}{2} =-30 $
| 3(6-u)/4=-3u+6 | | |3x-7|=5 | | x^2+0.40x-0.09=0 | | 48+7(x-1)=90 | | x=2=16 | | X+9x=25 | | 46=2(11+w) | | x^2-30x-1800=0 | | u+12=100 | | x^2-25x-156=0 | | 9x+45=2x+8 | | 3x+4x=-34 | | 3x+4x=-18 | | p-14=71 | | 4x-6x+15=9 | | -4w(w+9)(w-6)=0 | | x^2+23x-132=0 | | (2x+6)+(4x+7)=6x+13 | | 2(a+24)=39 | | 10ww=-6 | | 2x+4=–10+4x | | t6 | | x-0.01x=950 | | 3^(x+6)=3^4 | | x^2+20x-8000=0 | | -1x+2(-3x-13)=16 | | (+2x^2-4x+5x-10)(3x+4)=0 | | (2x+5)*(x-2)*(3x+4)=0 | | 2z)7+8=-3 | | 10000-x=1.5x | | x)7+9=-2 | | z)10+4=1 |